Profile Page

Name : Dr Anilkumar Lalchand Yadav

Designation : Assistant Professor Grade-ii

Department : Textile Technology

Qualification : PhD Porous Polymers (IIT Delhi)

M. Tech Fibers and Textile Processing Technology (ICT,

Mumbai)

Bachelor of Textile Textile Chemistry (DKTE's TEI,

Ichalkaranji)

Licenciate Diploma in Technical Chemistry Textile Chemistry

(VJTI, Mumbai)

Address : Department of Textile Technology

Dr. B. R. Ambedkar NIT Jalandhar

Jalandhar, Punjab - 144044

Email : yadaval@nitj.ac.in

Phone : #3324

Research Interests:

Textile Chemical Processing, Fibers, and Polymers.

Other Profile Links:

Google Scholar Link:

Anilkumar L. Yadav Click Here

Journal Publications:

Year	Journal	Publication
2022	Ind. Eng. Chem. Res. 2022, 61, 41,	Recent Advancements in Flame-Retardant Polyurethane Foams: A
	15046–15065	Review
2022	Chem. Commun., 2022,58,	Emulsion templated scaffolds of poly (?-caprolactone)—a review
	1468-1480	
2020	Colloids and Surfaces A:	Polymer crystallization under dual confinement of High internal phase
	Physicochemical and Engineering	emulsion templated crosslinked polymer
	Aspects Volume 600, 2020,	
	124938	
2020	Polymers 2020, 12(12), 2849	Synthesis of Lactic Acid-Based Thermosetting Resins and Their Ageing
		and Biodegradability
2020	Chem. Commun., 2020,56,	Facile synthesis of templated macrocellular nanocomposite scaffold via
	12604-12607	emulsifier-free HIPE-ROP

2020	Polymers 2020, 12(8), 1849	Hydrolytic Degradation of Porous Crosslinked Poly(?-Caprolactone)
		Synthesized by High Internal Phase Emulsion Templating
2020	Langmuir 2020, 36, 9, 2419–2426	Electrospinning of a near gel resin to produce cross-linked fibrous
		matrices
2019	Polymer, 176, 2019, 66-73	Macroporous scaffolds of cross-linked Poly (?-caprolactone) via high
		internal phase emulsion templating.
2019	Biomacromolecules 2020, 21, 2,	Cellulose-Derived Nanographene Oxide Reinforced Macroporous
	589–596	Scaffolds of High Internal Phase Emulsion-Templated Cross-Linked
		Poly(?-caprolactone)