

# Dr B R AMBEDKAR NATIONAL INSTITUTE OF TECHNOLOGY JALANDHAR

# Five Year Strategic Plan

### Many Voices, One Vision-Moving Forward

Dated: 30-03-2022

### **Proposed Five Year Strategic Plan:**

a. An academic plan showing the courses proposed and a research plan focusing on current thrust/niche area (s) of expertise and proposed plan in pursuit of excellence in those areas

#### **Academic and Research Plan**

### **Starting of New UG Programmes**

- B Arch programme
- Integrated BTech programme in Fashion & Apparel Technology

## **Starting of New PG Programmes (Any two)**

- M Tech in Earthquake Engineering
- M Tech in Apparel Technology & Management
- M Tech in Biotechnology
- M Tech in Filtration Science and Engineering

### **Setting up of Centers (Any two)**

- Center for Advanced Software Development
- Centre for Concrete Construction
- Center for Bio Process Engineering and Bio Informatics
- Centre for Biomedical Engineering and Healthcare Technologies
- Centre for Robotics
- Center for Nano Materials

# Attracting sponsored R&D and industry sponsored consultancy projects in the following areas:

- Information Security
- Wireless Sensor Networks
- Natural Language Processing
- Data Mining and Warehousing
- Concrete Construction
- Earthquake Resistant Design of Structures
- Geotechnical and Geo-environmental Engineering
- Water Resources
- Construction Management
- Biomedical Engineering and Healthcare Technologies
- Robotics
- Mechatronics System Dynamics & Control
- Composite Materials/Nano Materials

#### 0-5 Year Plan

- a. To enhance the number of seats in each BTech programme to 150
- b. To enhance the number of seats in each M Tech programme to 70
- c. To start at least 2 new M Tech programmes, to be decided by the Institute
- d. To start at least 2 additional Centers of Excellence, to be decided by the Institute

# b. A faculty recruitment policy and plan to meet the academic plan requirements and to achieve 1:10 faculty students ratio.

Based upon the expected student's strength, the faculty positions shall be estimated. The recruitment of faculty shall be made twice a year based upon rolling advertisement. It is hoped that the with the modified recruitment rules in place, the recruitment of faculty will be a smooth process.

# Appointing faculty from industry, Government, Non-profit organizations, etc. including foreign faculty

- Appoint, retain and reward diverse faculty who are recognized as global leaders in their fields by providing a world-class, collaborative work environment
- Comprehensive regional and national higher education jobs websites
- Member collaboration on facilitating dual-career employment and state-of-the art dual-career search technology
- Conference attendance to reach out to student jobseekers with a special emphasis on their professional skills
- Partnerships with associations, societies, and publications

## d. Student admissions policy to select Indian and foreign students

The Institute presently admits Indian students to BTech and MTech programmes through All India Entrance Tests and foreign students through DASA. The Institute proposes to continue with the existing system for admitting of students. The present process of admitting PhD students through internal test and interview is also proposed to be retained.

#### e. Scholarships to meritorious students

The students admitted to various BTech programmes shall be offered scholarship as per the following Table. These scholarships will be applicable only for the 1<sup>st</sup> semester and for subsequent semesters, a comprehensive policy based on the academic performance of the students shall be worked out.

| %age of Tuition<br>Fee Waiver | All India Rank range of JEE-<br>Main for General category<br>students | All India Rank range of JEE-Main for SC/ST/OBC category students |
|-------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|
| 100%                          | 1-500                                                                 | 1-10000                                                          |
| 75%                           | 501-2000                                                              | 10001-20000                                                      |
| 50%                           | 2001-4000                                                             | 20001-40000                                                      |

# f. Developing research laboratories

# **Establishing New Laboratories and Modernization of Existing Laboratories:**

| Thrust Area                          | Department           | Action Plan                       |
|--------------------------------------|----------------------|-----------------------------------|
| Bioprocess Engineering,              | Biotechnology        | Establishment of new              |
| Production of Green and Clean Bio-   |                      | laboratories and modernization    |
| fuels, Bioinformatics.               | C' 'IE ' '           | of existing laboratories          |
| Concrete for Sustainable High        | Civil Engineering    | Modernization of laboratories     |
| Performance Infrastructure,          |                      | and establishing of new           |
| Geotechnical and Geo-environmental   |                      | laboratories                      |
| Engineering, Earthquake Engineering  | Cl. I.E.             | E (11'1 (CM 1                     |
| Environment, Energy, Material        | Chemical Engineering | Establishment of Membrane         |
| Science.                             |                      | Science, Biodiesel Reactor,       |
|                                      |                      | Rotary Vacuum Evaporator,         |
|                                      |                      | and Flash point Apparatus         |
| Software Engineering and Internet of | Computer Science and | Establishment of new              |
| Things, Image and Natural Language   | Engineering          | laboratories and Modernization    |
| Processing, Wireless Sensor and      |                      | of existing ones with statistical |
| Optical Networks,                    |                      | data miner and other software     |
| Information Security,                |                      | tools                             |
| Data Mining and Warehousing          |                      |                                   |
| Smart Polymers,                      | Chemistry            | Establishment of R&D              |
| Nanosurface and Nanoenvironmental    | ·                    | Laboratories with equipments      |
| Chemistry,                           |                      | like HPLC,                        |
| Synthetic Organic Chemistry          |                      | Establishment of Nanosurface      |
|                                      |                      | and Nanaoenvironmental            |
|                                      |                      | Laboratories                      |
|                                      |                      | Modernization of existing         |
|                                      |                      | laboratories                      |
| VLSI Circuit Design,                 | Electronics and      | Establishment of new              |
| Intelligent systems and Wireless     | Communication        | laboratories and modernization    |
| Communication,                       | Engineering          | of existing laboratories          |
| Biomedical Signal Processing         |                      |                                   |
| Business Management,                 | Humanities and       | Modernization of existing         |
| Entrepreneurship,                    | Management           | Communication Laboratory          |
| Communication Skills                 |                      |                                   |
| Industrial Automation and Industrial | Instrumentation and  | Establishment of new              |
| Robotics, Process Control,           | Control Engineering  | laboratories and modernization    |
|                                      |                      | of existing laboratories          |

| Thrust Area                         | Department             | Action Plan                    |
|-------------------------------------|------------------------|--------------------------------|
| Advanced Biomedical                 |                        |                                |
| Instrumentation and Healthcare      |                        |                                |
| Technologies,                       |                        |                                |
| Virtual Instrumentation, Smart      |                        |                                |
| Virtual Grid,                       |                        |                                |
| Advanced Machine Processing         | Industrial and         | Modernization of existing      |
|                                     | Production Engineering | Laboratory.                    |
| Finite Element Methods for Partial  | Mathematics            |                                |
| Differential Equations,             |                        |                                |
| Wavelet Method for Partial          |                        |                                |
| Differential Equations,             |                        |                                |
| Sampling Statistics                 |                        |                                |
| Composites and Nano-Composites.     | Mechanical             | Establishment of new           |
| Mechatronics, System Dynamics and   | Engineering            | laboratories for Mechatronics, |
| Control,                            |                        | IC Engine, and Composite       |
| Heat Transfer in Combustion         |                        | Manufacturing and Testing      |
| Systems,                            |                        | Laboratories                   |
| IC Engine Diagnostics,              |                        |                                |
| Computational Fluid Dynamics,       |                        |                                |
| Hybrid Fuels                        |                        |                                |
| High energy Physics,                | Physics                | Establishment of new           |
| Environment Monitoring and          |                        | laboratories and modernization |
| Assessment of Radiation Risks,      |                        | of existing laboratories       |
| Plasma                              |                        |                                |
| Medical Textile Research, Non-      | Textile Technology     | Establishment of new           |
| woven and 3D Fabric Manufacturing,  |                        | laboratories and modernization |
| Textile Composite Research, Product |                        | of existing laboratories       |
| Design, Polymer Nanocomposites,     |                        |                                |
| Aerosol Filtration,                 |                        |                                |
| Extraction/coloration with Natural  |                        |                                |
| Dyes                                |                        |                                |

# g. Teaching and Research Collaboration with Global Universities figuring in the most reputed global rankings

Today's universities are typically focused on attracting the best students and scholars from around the world, launching partnerships with overseas institutions and businesses, incentivizing cross-border research collaborations and educating their students to become "global citizens".

Further, the number of research publications with co-authors from different countries has increased and even faster than the overall growth in the number of papers. The economic and cultural drivers for a globalized, inter-connected world are so strong that such interconnectedness will remain one of the "defining characteristics" and it is clear that universities care about internationalization.

Here are some points which may be helpful for planning of Teaching and Research Collaboration with Global Universities:

- 1. Most important thing is to have a real international network of alumni; and if these alumni feel they have been trained and educated well, they are all ambassadors for what is going on in the world.
- 2. By increasing the number of international agreements for dual degrees, may be helpful.
- 3. If Faculty members choose the partners that are best suited to their research, this naturally leads to a very high degree of international collaboration.
- 4. **Research collaborations:** These days, a lot of research is collaborative and universities with international faculty are more likely to facilitate such collaborations, whether with faculty at their alma mater or with colleagues and friends with whom they attended graduate school and who are now placed at other institutions.
  - On the other hand, faculty-to-faculty collaborations across institutions in India and abroad, when based on common research interests and old ties and trust, are usually more successful.
- 5. **Benefits for students:** There is no doubt that international faculty would benefit students and other faculty as well. With the launching of the Global Initiative of Academic Networks, students are getting better exposure to international faculty than before but most such exposure will be short-term. There is really no substitute for hiring regular international faculty who can play mentorship roles over a fairly long period.
- 6. Willingness to engage in curriculum development and joint degree programs, whereas only curriculum development was on top of the chart for a few state and central institutions.

#### h. Networking plan outlining the teaching and research collaborations and partnerships

- Hosting local, regional and international events
- Engaging external advisory boards with representation throughout the global enterprise
- Grow workforce development services, including on-campus, global online and in-plant professional training projects
- Increase entrepreneurship of our students and stakeholders by providing support services to start-up companies in India and beyond

### i. Accreditation from International Agencies as well as marketing and promotion

To maintain highest academic standards, the institute proposes to go for Accreditation Board for Engineering and Technology (ABET) accreditation in next 5 years.

### j. Involving the alumni in the management of the institute.

- Encouraging alumni to support institute activities through strengthening industry relations, facilitating interactions between aspiring students, faculty, entrepreneurs, transforming fundraising to a professionally managed development effort
- Advisory Board consisting of representatives from the various stakeholders
- Building mutually beneficial relations with the alumni
- Creating alumni group pages or blogs to carry out online real time discussions
- Tele-calling and other personalized efforts to actively engage with alumni
- Face to face interactions with the alumni from time to time
- Inviting alumni faculty members in foreign universities for catalyzing collaborations

\*\*\*\*